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ABSTRACT 

Dynamic light-scattering experiments are performed on semi-dilute solutions of hydroxyethyl cellulose which have been shown to be 
suitable as molecular sieving media for electrophoretic separations in a capillary format. The multi-exponential data analysis program 
CONTIN is used to determine the various relaxation processes present. The relationship between polymer concentration, C (g/ml), and 

the mesh-size of the entangled network, 5, is found to be c(A) = 6.0 C-o.68, which is in good agreement with predictions based on the 

scaling theory of De Gennes and intrinsic viscosity measurements, 

INTRODUCTION 

Recently it has been demonstrated that low- 
viscosity (< 2 cP) semi-dilute polymer solutions can 
be used as molecular sieving media for electrophoret- 
ic separations performed in micro-capillary tubes 
[l-7]. These systems promise significant practical 
advantages over traditional rigid-gel electrophoresis 
media in that no gel preparation step is required. 
Furthermore, because of their low viscosity, these 
solutions are well suited for use in automated 
capillary electrophoresis instrumentation. In es- 
sence, the use of semi-dilute polymer solutions in a 
capillary electrophoresis format decouples the two 
roles of a traditional electrophoresis gel: that of an 
anti-convective support and of a molecular sieve. 

In our previous report [3] the scaling theory of De 
Gennes [8] and traditional theories of electrophoret- 
ic migration were used to relate the properties of the 
mesh-forming polymer to the mesh size of the 
polymer network and to the resulting electrophoret- 

Correspondence to: Dr. P. D. Grossman, Applied Biosystems, 
Inc., 850 Lincoln Center Drive, Foster City, CA 94404, USA 
(present address). 

ic migration behavior of a series of DNA restriction 
fragments. It was shown that the mesh size of the 
entangled polymer solution was similar to that of 
traditional agarose gels and that the migration 
mechanism of the DNA fragments was the same as 
that found in traditional rigid-gel matrices. Further- 
more, a relationship was proposed which could be 
used to design optimal entangled polymer systems 
for different electrophoresis applications. 

Since the first successful application of scaling 
theory to polymer solutions by De Gennes [8], 
dynamic light scattering (also known as photon 
correlation spectroscopy or quasielastic light scat- 
tering) has played an important role in the study of 
the dynamics of semi-dilute polymer solutions. Here 
we apply the technique of dynamic light scattering to 
measure the mesh size of the hydroxyethyl cellulose 
(HEC) solutions which were shown to be useful as 
sieving media in electrophoretic separations of 
DNA restriction fragments. In particular, we con- 
firm the predictions for the mesh size based on 
scaling theory and intrinsic viscosity measurements 
for aqueous HEC solutions used in our previous 
electrophoresis study. 
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THEORY 

Physical basis 
Dynamic light-scattering measurements yield di- 

rectly the mutual diffusion coefficient of a scattering 
species undergoing Brownian motion. The time 
dependence of the intensity fluctuations of the 
scattered light, Z(t), can be related to the transport 
properties of the scattering species. 

A simple picture of a light-scattering photometer 
is given in Fig. 1. A monochromatic laser light is 
used to illuminate a region of the sample solution. 
The sample scatters light in all directions and a 
record of the intensity fluctuations of the light 
scattered through a small range of angles is collected 
using a photodetector. These intensity fluctuations 
are then related to the Brownian motion of the 
scattering species. 

In the case of semi-dilute polymer solutions, light 
scattering is caused by fluctuations in the concentra- 
tion of the sample polymer induced by its thermal 
motion within the illuminated volume. The relaxa- 
tion rate of these concentration fluctuations can be 
determined using the scattered intensity autocorre- 
lation function, G(2)(z), where 

T 

G(2)(r) = (Z(t)Z(t + r)) = ;+t _: 
. s 

Z(t) Z(t + z)dz 

0 

(1) 

where Z(t) is the time dependent intensity of the 
scattered light, z is the delay time of the fluctuations, 
T is total time for the measurements and the angle 
brackets denote a statistical average. The relaxation 
rate of the intensity fluctuations, Z, is calculated by 
fitting experimental data to a theoretical formula- 
tion of G(2)(z). 

The diffusive nature of the relaxation process 
responsible for the decay in G(2)(7) indicates that the 
scattered intensity autocorrelation function is char- 
acterized by an exponentially decaying function, 
with the time constant given by Z-l, where 

r = Djq12 (2) 

where Z is the relaxation rate of the process, D is the 
diffusion constant and q is the scattering vector. The 
scattering vector is a measure of the characteristic 
length associated with the diffusive fluctuations 
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Fig. 1. Schematic diagram of light scattering apparatus. 

which can be measured at a given scattering angle 
with a given incident radiation. The magnitude of q 
is given by the relation 

47tn . e 
qzTsln 0 z 

where 0 is the angle between the incident and 
scattered light, n is the refractive index of the 
scattering medium, and I is the wavelength of the 
incident light in vacua. Thus, knowing Z, one can 
determine the value for D. 

In the limit of infinite dilution, the self diffusion 
coefficient, Do, of a spherical particle is given by the 
Stokes-Einstein relation as 

Do=& 
where k is Boltzmann’s constant, T is the absolute 
temperature, q is the viscosity of the pure solvent 
and R is the particle radius. According to the scaling 
theory of De Gennes [S], in semi-dilute polymer 
solutions, the cooperative diffusion coefficient of the 
polymer, D,, is given by 

D, =z 
6’Ttd 

(5) 

where <d is the dynamic correlation length of the 
polymer, which can be interpreted as a measure of 
the mesh size of the polymer network. De Gennes 



P. D. Grossman et al. 1 J. Chromatogr. 608 (1992) 79-83 81 

g(l)(z) = (E”(t)E(t + r)) = 

Fig. 2. Schematic illustration of a semi-dilute polymer solution 
according to the scaling theory of De Gennes [8]. G(2)(7) = BP + Plg(l)(~>121 (8) 

theory assumes that semi-dilute polymer solutions 
can be modeled as a group of spherical polymer 
“blobs” having a characteristic size td whose motion 
is uncorrelated (see Fig. 2). Thus, given an experi- 
mentally measured value of r, in a semi-dilute 
solution, using eqns. 2 and 5, one can obtain an 
estimate of the value td. The value of r is calculated 
from the measured autocorrelation function of I(t). 
This procedure will be discussed in the following 
section. 

The autocorrelation function 
In general, correlation functions provide a meth- 

od for expressing the degree to which dynamic 
properties are correlated over time. As mentioned 
earlier, dynamic light-scattering experiments mea- 
sure the intensity autocorrelation function through 
the recorded time dependent intensity of the scat- 
tered light, I(t). However, because the dielectric 

-constant fluctuations which are responsible for light 
scattering are proportional to the electric field of the 
scattered light rather than the intensity, it is necessa- 
ry to know the relationship between the scattered 
intensity and the scattered electricfield autocorrela- 
tion functions. (The structural information is con- 
tained in the behavior of the scattered electric field, 
but all we can measure directly is the scattered 
intensity.) The scattered electric field autocorrela- 
tion function, g(l)(r) is defined as 

where E(t) is the time dependent electric field of the 
scattered light, and E*(t) is the complex conjugate of 
E(t). E(t) is related to the intensity of the scattered 
light by 

I(t) = E*(t)E(t) (7) 

For the case of semi-dilute polymer solutions, the 
relationship between G(2)(t) and g(l)(z) is given by 
the homodyne autocorrelation function 191, thus 

where B is the baseline and the pre-exponential 
factor B is an instrumental correction factor having a 
value between 0 and 1. A typical plot of the scattered 
electric field autocorrelation function is shown in 
Fig. 3. 

The analysis of the measured autocorrelation 
function, G(2)(z), is a critical step in a dynamic 
light-scattering experiment. In the simplest case, 
that of a monodisperse suspension of nearly spheri- 
cal particles, e.g. polystyrene latex spheres, the 
autocorrelation function can be fitted to a single 
exponential function. In this case, 

g(l)(r) = A exp(-Tr) + B (9) 

where A is the spectral amplitude and B is the 
baseline. 

In the case of semi-dilute polymer solutions, a 
number of relaxation processes occur simultaneous- 
ly, and a single exponential approach is not satisfac- 
tory. These processes include center-of-mass motion 
of a single chain, center-of-mass motion of groups of 
chains and changes in the conformation of individu- 
al chains. Therefore, one is forced to use a multi- 
exponential approach to resolve the different relaxa- 
tion modes present. In this study we will use the 
CONTIN method [lO,l 11. CONTIN fits the electric 
field autocorrelation function to a series of expo- 
nential functions, 

Nj 

g(l)(r) = 
s 

G(Tj) exp( - Tjr) + 1 (10) 

j=l 
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Fig. 3. Representative plot of the scattered electric field auto- 
correlation function, g(l)(r). Data are from a solution of 0.006 
g/ml HEC in TBE buffer at 30°C. The scattering angle is 90”. 

where G(T) is the normalized rate distribution, 1 is a 
constant and Nj is the number of exponentials used 
in the sum. Note that if Nj = 1, eqn. 10 reduces to 
eqn. 9. In this study 31 exponentials were used to 
extract values for rj from measurements of g( 1) (z). 

MATERIALS AND METHODS 

The light-scattering instrument used in these 
studies was purchased from Brookhaven Instru- 
ments Corporation (Holtsville, NY, USA). The light 
source is a Lexel Model 95-2 argon ion laser (Palo 
Alto, CA, USA) whose incident polarization is per- 
pendicular to the scattering plane. The sample cell is 
immersed in an index matching liquid (toluene) in 
order to reduce the reflection of the incident beam 
from the surface of the sample cell. All measure- 
ments were made at a scattering angle of 90” and the 
sample time was 2.5 ps. Data for each measurement 
were accumulated over a period of 5 min. The 
temperature was controlled at 30.0 _+ O.l”C using a 
Lauda Model RM6 circulating water bath (West- 
bury, NY, USA). The correlator is a Brookhaven 
BI-2030 real-time 136-channel digital correlator. 

As mentioned before, the measured autocorrela- 
tion functions were analyzed using the LaPlace 
inversion program CONTIN [ 10,111. 

The buffer used in all experiments was 89 mM 
tris(hydroxymethyl)aminomethane, 89 mM boric 
acid and 5 mM ethylenediaminetetraacetic acid 
(TBE buffer) at pH 8.1. Varying amounts of (hy- 
droxyethyl) cellulose was added to the TBE buffer to 
make up the polymer solutions. All the solutions 

0 1 2 3 4 5 

Log r (s-l) 

Fig. 4. Representative plot of the distribution ofrelaxation times. 

Data are from a solution of 0.01 g/ml HEC in TBE buffer at 30°C. 
The scattering angle is 90”. 

were filtered through a 0.2~pm nylon filter (Fisher 
Scientific, Pittsburgh, PA, USA) to remove any dust 
particles and were allowed to sit for between 18 and 
24 h to insure complete dissolution of the polymer. 

RESULTS AND DISCUSSION 

A plot of the distribution of relaxation times of an 
HEC solution having a concentration of 0.006 g/ml 
is shown in Fig. 4. This plot is typical of these seen at 
other polymer concentrations above the overlap 
concentration. The origin of the modes has been 
determined in a previous report from this laboratory 
using solutions of polyacrylamide [9]. The slow 
mode (small r) was attributed to the center-of-mass 
motion of unentangled single polymer chains, while 
the fast mode (large r) was attributed to the 
dynamics of the entangled polymer network (co- 

200. 

cd(A) 150S q 

. 

. 

100 l * 

50- 
0.000 0.005 0.010 0.015 0.020 0.025 

c (gW 

Fig. 5. Plot of the measured dynamic correlation length, rd, as a 
function of HEC concentration. The solid curve is a plot of eqn. 
11 where a = 4.22 A and v = 0.75. 
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Fig. 6. Concentration dependence of the dynamic correlation 

length for HEC solutions at 30°C (0.006-0.02 g/ml). The straight 
line is a linear least-squares fit where id(A) = 6.0C-“.68. 

Fig. 7. Plot of the measured dynamic correlation length, &, as a 
function of HEC concentration. The solid curve is a plot of eqn. 
12. 

operative diffusion). In this work, because we are 
concerned with the polymer network and not indi- 
vidual polymer chains, we are interested exclusively 
in the cooperative diffusion (fast) component of the 
relaxation spectrum. 

Fig. 5 shows plot of the measured correlation 
length, td, as a function of polymer concentration. 
The solid curve is the predicted value of td based on 
the scaling theory, 

& = UC-” (11) 

where a is the polymer segment length and C is the 
polymer concentration (in this case the volume 
fraction and the concentration are assumed to be 
equivalent) and v is a constant whose value depends 
on the solvent quality. For a good solvent, v = 0.75. 
The value of a used in constructing the curve in Fig. 
5 is 4.22 A. This value was determined using intrinsic 
viscosity measurements [3] in the TBE buffer. All the 
points in Fig. 5 are above the experimentally mea- 
sured value of the overlap threshold of approximate- 
ly 0.4%. 

indicating a segment length of 6.00 A. This value is 
higher than the value measured by intrinsic viscosi- 
ty, 4.22 A, but well within the margin of error for 
these measurements. Based on these measurements, 
for the polymer-solvent system considered here, 

<(A) = 6.0C-“.68 (12) 

Fig. 7 compares the experimental data with the 
curve described by eqn. 12. Thus, comparing Figs. 5 
and 7, it can be seen that these data are in close 
agreement with the predictions of scaling theory. 
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